USN

BEE502

Fifth Semester B.E./B.Tech. Degree Examination, June/July 2025 Signals and DSP

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

	_	Module – 1	M	L	C
Q.1	a.	For each of the following signals, determine whether it is periodic and if it is find fundamental period. (i) $x(t) = \sin^3(2\pi t)$ (ii) $x(n) = [-1]^n$	10	L3	CO1
	b.	Determine the system is (i) linear (ii) time invariant (iii) causal (iv) static. Justify the answer. (1) $y(t) = x(3t)$ (2) $y(t) = x(t^2)$	10	L3	CO1
		OR			
Q.2	a.	Find the even and odd components of the following: (i) $x(t) = e^{-2t} \cos t$ (ii) $x(t) = (1 + t^3) \cos^{10}(t)$	10	L3	C01
	b.	Evaluate the convolution integral for a system the input $x(t)$ and impulse response $h(t)$. Given $h(t) = e^{-t} u(t)$, $x(t) = e^{-4t} [u(t) - u(t-3)]$. Also sketch $y(t)$.	10	L3	CO1
		Module – 2			
Q.3	a.	Solve for the output $y(n)$ of a filter whose impulse response $h(n) = \{1, 2\}$ and input signal. $x(n) = \{1, 2, -1, 2, 3, -2, -3, -1, 1\}$ using overlap save method.	10	L3	CO2
	b.	Determine the 4-point circular convolution of sequences $x_1(n) = (1, 2, 3, 1)$ and $x_2(n) = (4, 3, 2, 2)$ using the time-domain \uparrow approach and verify the result using frequency-domain approach.	10	L3	CO2
		OR			
Q.4	a.	Compute the 8-point DFT of the sequence $x(n)$ given below. x(n) = (1, 1, 1, 1, 0, 0, 0, 0)	10	L3	CO2
2	b.	State and prove the following properties of DFT: (i) Linearity (ii) Circular time shift (iii) Circular frequency shift.	10	L2	CO2
		Module – 3	1	1	1
Q.5	a.	Determine 8-point DFT of a sequence $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ using Radix-2 DIT-FFT algorithm.	10	L3	CO3
	b.	Compute the 8-point IDFT of the sequence $X(K)$ $X(K) = \{0, 2+2j, -j4, 2-2j, 0, 2+2j, j4, 2-2j\}$ using inverse radix-2 DIT-FFT algorithm.	10	L3	CO3
		1 of 3			

				BE	E502
		OR .			
Q.6	a.	Compute the 4-point DFT of the sequence $x(n) = \left(\frac{\pi}{4} n\right)$ using DIT-FFT	06	L3	CO:
		algorithm.			
	b.	Solve for the 4-point circular convolution of x(n) and h(n) given in Fig.Q6(b) using radix-2 DIF-FFT algorithm.	10	L3	CO
		Fig.Q6(b)			
	c.	What are the differences and similarities between DIT and DIF-FFT algorithm?	04	L2	CO
		Module – 4			
Q.7	a.	A butterworth lowpass filter has to meet the following specifications. (i) Passband gain $K_p = -1$ dB at $\Omega_p = 4$ rad/sec	10	L3	СО
		(ii) Stopband attenuation greater than or equal to 20 dB at $\Omega_s = 8$ rad/sec. Determine the transfer function $H_a(s)$ of the lowest – order Butterworth filter to meet the above specifications.		-	
	b.	Determine the system function $H(z)$ of the lowest order Chebyshev filter that meets the following specifications. (i) 3 dB ripple in the passband $0 \le w \le 0.3\pi$ (ii) Atleast 20 dB attenuation in the stopband $0.6\pi \le w \le \pi$. Use bilinear transformation.	10	L3	СО
		OR			
Q.8	a.	Draw the block diagrams of direct form-I and direct form-II realizations for a digital IIR filter described by the system function $H(z) = \frac{8z^3 - 4z^2 + 11z - 2}{\left(z - \frac{1}{4}\right)\left(z^2 - z + \frac{1}{2}\right)}$	10	L3	СО
	b.	Obtain a parallel realization for the transfer function H(z) given below. $H(z) = \frac{8z^3 - 4z^2 + 11z - 2}{\left(z - \frac{1}{4}\right)\left(z^2 - z + \frac{1}{2}\right)}$	10	L3	СО
Q.9		Module – 5 The desired frequency regions of a layeress filter is sixen by	10		~~
Ų.5	a.	The desired frequency response of a lowpass filter is given by $H_d(e^{jw}) = H_d(w) = \begin{cases} e^{-j3w}, & w < \frac{3\pi}{4} \\ 0, & \frac{3\pi}{4} < w < \pi \end{cases}$ Determine the frequency response of the FIR filter if Hermine with the state of	10	L3	СО
		Determine the frequency response of the FIR filter if Hamming window is used with $N = 7$.			

1					E502
	b.	A filter is to be designed with the following desired frequency response: $H_d(w) = \begin{cases} 0 & , & -\frac{\pi}{4} < w < \frac{\pi}{4} \\ e^{-j2w} & , & \frac{\pi}{4} < w < \pi \end{cases}$ Determine the frequency response of the FIR filter designed using a	10	L3	CO
		$W_R(n) = \begin{cases} 1 & , & 0 \leq n \leq 4 \\ 0 & , & \text{otherwise} \end{cases}$ Also find the frequency, $H(w)$ of the resulting FIR filter.			
		OR			
Q.10	a.	Determine the coefficients K _m of the lattice filter corresponding to FIR filter described by the system function	10	L3	СО
		$H(z) = 1 + 2z^{-1} + \frac{1}{3}z^{-2}$			
		Also, draw the corresponding second order lattice structure.		× *	
	b.	A lowpass filter has the desired frequency response	10	L3	СО
		$H_{d}(w) = H_{d}(e^{jw}) = \begin{cases} e^{-j3w}, & 0 < w < \frac{\pi}{2} \\ 0, & \frac{\pi}{2} < w < \pi \end{cases}$			
		Determine $h(n)$ based on frequency-sampling technique. Take $N = 7$.			