

Sixth Semester B.E. Degree Examination, June/July 2025 Design of Machine Elements – II

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Explain equalizing the stresses in leaf spring.

(05 Marks)

b. A spring is subjected to a load varying from 400 N to 1000 N is to be made of tempred steel cold wound wire. Determine the diameter of wire and mean coil diameter of spring for a factor of safety 1.5 spring index 6. Torsional endurance limit is 400 N/mm². (15 Marks)

OR

2 a. Classify the brakes and name different types of mechanical brakes.

(05 Marks)

- b. The block break as shown below is to balance a torque of 500 Nm on a drum shaft at 1000 rpm. Assuming the coefficient of friction between the break shoe and drum to be 0.25 and 20<60°, determine
 - (i) Tangential force on shoe.
 - (ii) Normal force on shoe.
 - (iii) Force F applied to the brake for clockwise and counter clockwise rotation. (15 Marks)

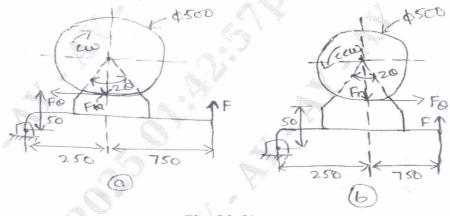


Fig. Q2 (b)

Module-2

Design a pair of spur gears to transmit a power of 18 kW from a shaft running at 1000 rpm to a parallel shaft to be run at 250 rpm maintaining a distance of 160 mm between the shaft centres. Suggest suitable surface hardness for the gear pair. (20 Marks)

OR

Design a pair of helical gear to transmit 12 KW at 2400 rpm of pionion. The velocity ratio required is 4:1, Helix angle is 23° . The centre distance is to be around 300 mm, pressure angle in the normal plane is $14\frac{1}{2}^{\circ}$ involute. Pinion material is cast steel ASTM class B. Gear material is cast iron better grade. (20 Marks)

Module-3

5 a. List the different forms of lubrication and bearing materials.

(05 Marks)

- b. SAE 20 oil is used to lubricate a hydrodynamic journal bearing of diameter 75 mm and length 75 mm, oil enters at 40°C. The journal rotates at 1200 rpm. The diameter clearance is 75 μm (0.075 mm). Assume operating temperature of the oil as 53°. Determine
 - (i) Magnitude and location of the minimum film thickness.
 - (ii) Power loss.
 - (iii) Oil flow through the bearing.
 - (iv) Side leakage.

(15 Marks)

OR

6 a. Derive an expression for sommerfeld number.

(05 Marks)

b. Design a journal bearing for a centrifugal pump running at 1200 rpm. Diameter of journal is 100 mm and load on bearing is 15 KN. Take L/d = 1.5, bearing temperature 50 °C and ambient temperature 30 °C. Find whether artificial cooling is required. (15 Marks)

Module-4

7 a. What are the functions of piston rings?

(05 Marks)

b. Design a cast iron piston for a single acting four stroke diesel engine from the following data Cylinder bore = 100 mm

Length of stroke = 125 mm

Speed = 2000 rpm

Brake mean effective pressure = 0.5 MPa

Maximum gas pressure = 5 MPa,

Fuel consumption = 0.25 kg/ brake power in kW/ hour

Assume any further data required for the design.

(15 Marks)

OR

8 a. Derive an expression for valve gear mechanism.

(10 Marks)

b. Explain briefly cam and cam shaft.

(10 Marks)

Module-5

9 a. Name the materials used for connecting rod.

(05 Marks)

b. Design a connecting rod for a petrol engine from the following data:

Diameter of piston = 100 mm

Length of connecting rod = 350 mm

Maximum gas pressure or explosion pressure = 3 N/mm²

Length of stroke = 150 mm

Engine speed = 1500 rpm

Weight of reciprocating parts = 25 N

Compression ratio = 4:1

Assume any further data required for the design.

(15 Marks)

OR

10 a. What is the manufacturing method for crank shaft?

(05 Marks)

b. Briefly explain the design procedure of crank shaft.

(15 Marks)

* * * * *