TUTE OF Eifth Semester B.E. Degree Examination, June/July 2025 **Chemical Reaction Engineering**

Library Time: 3 hrs.

MCA

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Milk is pasteurized of it is heated to 63 °C for 30 min, but if it is heated to 74 °C it only a. needs 15S for the same result. Find the activation energy of this sterilization process.
 - A reaction with stiochiometric equation

$$\frac{1}{2}$$
 A + B \Rightarrow R + $\frac{1}{2}$ S.

Has the following rate expression $- r_A = 2 C_A^{0.5} C_B$.

What is the rate expression for this reaction? If the stoichiometric equation is written as A + 2 B = 2 R + S.

- iii) Show a graphical representation between R (rate constant) Vs Temperature for High and low activation energy conditions.
- b. Derive a mathematical expression for evaluating 'R' rate constant and 'n' order of a reaction by using differential method of analysis.

OR

a. A gas phase decomposition of A takes place according to the irreversible reaction A \rightarrow 3 P. the kinetics of the reaction was studied by measuring the increase in pressure in a constant volume reaction vessel. At 504 °C and an initial pressure of 312 mm Hg, the following data were obtained.

Time (sec)	390	777	1195	3155	α
Pt, mm Hg	408	488	562	779	931

Evaluate the given data follows first order kinetic reaction (or) not.

(10 Marks)

b. Derive an expression for an irreversible Bimolecular -Type Second order reactions $A + B \rightarrow Products$. (10 Marks)

Module-2

a. Derive an expression for evaluating the performance equation for an unsteady state batch reactor. In addition give the graphical representation to evaluate volume of a batch reactor.

(10 Marks)

b. Pure gaseous reactant A ($C_{AO} = 100 \text{ milli mol} / \text{litre}$) is fed at a steady rate into a mixed flow reactor (V = 0.1 litre) where it dimerizes (2A \rightarrow R). For different gas feed rates the following data are obtained.

Run number:	1	2	3	4	
V _o , litre/hr	30.0	9.0	3.6	1.5	
C _{Af} , milli mol/litre:	85.7	66.7	50	33.4	

Determine the rate equation for this reaction.

(10 Marks)

OR

4 a. Derive an expression for a steady state plug flow reactor.

(10 Marks)

b. For a homogenous gas decomposition of phosphine 4 PH_{3(g)} \rightarrow P_{4(g)} + 6H₂. Proceeds at 649 °C with the first order rate

$$-r_A = (10/hr) C_{PH_3}$$

Determine the size of plug flow reactor operating at 649 °C and 460 KPa can produce 80% conversion of a feed consisting of 40 mol of pure phosphine per hour? (10 Marks)

Module-3

- 5 a. Enumerate the graphical representation of properties of the E and F curves for various flow models in steady state reactors. (10 Marks)
 - b. Explain detail about the factors to know about reactor behavior for the conversion in non ideal flow reactors. (10 Marks)

OR

6 a. Calculate the mean residence time of fluid in the vessel t and tabulate and plot the exit age distribution for the given data represent a continuous response to a pulse input into a closed vessel which is used as a chemical reactor.

(15 Marks)

Time (t), min:	0	5	10	15	20	25	30	35
Tracer output concentration, Cpulse gm/litre fluid:	0	3	5	5	4	2 -	1	0

b. Write about the significance of transforming an experimental C_{pulse} curve into an E – curve in a pulse experiment in RTO. (05 Marks)

Module-4

- 7 a. Derive the expression for relating enzyme activity with respect to substrate concentration.
 (10 Marks)
 - b. Infer the changes in a enzymatic process inhibited by competitive and uncompetitive inhibition with a non inhibitive enzymatic process by using only Graphical representation.

 (10 Marks)

OR

- 8 a. Evaluate the parameters K_m (&) V_{max} by using line weaver Burk plot and Eadie Hofstee plots. (10 Marks)
 - b. An enzymatic reaction for the conversion of starch to glucose was carried out by varying the reaction time from 10 min to 60 min with a fixed volume of enzyme around 2 Mℓ. The observed data is given in the below table. Determine the enzyme activity and plot the response by graphically between Time Vs Enzyme Activity.

Note: There is no dilutions of the samples.

Time (min):	10	20	30	40	50	60
Conc. Of Glucose (mg/l)	12	18	25	33	41	41

(10 Marks)

Module-5

- 9 a. Explain about the changes of filamentous organisms growth as a function of time by using mathematical model. (10 Marks)
 - b. Evaluate the biomass concentration (X) and utilized substrate concentration (ΔS) by using Monod growth model for a batch culture condition growth process. (10 Marks)

OR

- 10 a. Explain about Leude King Piret model for growth associated and non growth product formation by mathematically and graphically. (10 Marks)
 - b. Explain about the factors which influence the choice of carbon source. In addition to that, write a short note on various sources of carbon sources. (10 Marks)