CBCS SCHEME

USN	OF THE REAL PROPERTY.	-						BMATC201
-----	-----------------------	---	--	--	--	--	--	----------

Second Semester B.E/B.Tech. Degree Examination, June/July 2025 Mathematics – II for Civil Engineering Stream

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

3. VTU Formula Hand Book is permitted.

		Module – 1	M	L	C
1	a.	Evaluate $\int_{-\infty}^{4} \int_{-\infty}^{2\sqrt{z}} \int_{-\infty}^{\sqrt{4z-x^2}} dy dx dz.$	7	L3	CO1
		0 0 0			
	b.	By changing order of integration evaluate $\int_{0}^{a} \int_{0}^{2\sqrt{ax}} x^{2} dy dx$.	7	L3	CO1
	c.	Define beta and gamma functions. Show that $\sqrt{\frac{1}{2}} = \sqrt{\pi}$.	6	L2	CO1
		OR			
2	a.	Evaluate: $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy by changing into polar coordinator.$	7	L3	CO1
	b.	Find the area bounded between parabolas $y^2 = 4ax$ and $x^2 = 4ay$ using double integration.	7	L3	CO1
	c.	Write a modern mathematical program to evaluate the integral $\int_{0}^{3} \int_{0}^{3-x} \int_{0}^{3-x-y} xyz dz dy dx.$	6	L3	CO5
		Module – 2			
3	a.	Find the directional derivative at $\phi = 4xz^3 - 2x^2y^2z$ at $(2, -1, 2)$ along the vector $2i - 3j + 6k$.	7	L2	CO2
	b.	If $\phi = x^2 + y^2 + z^2$ and $\overrightarrow{F} = \nabla \phi$ then find grad ϕ , div \overrightarrow{F} and curl \overrightarrow{F} .	7	L2	CO2
	c.	Show that $\overrightarrow{F} = \frac{x_i + y_j}{x^2 + y^2}$ is both Solenoidal and irrotational.	6	L2	CO2
		1 of 3		1	
		7			

-	78. AT	A 17	10	^	4
В	M	A	1	U	1

				BMATC201			
		OR					
4	a.	Compute the line integral $\int_{c} [(x^2 + xy)dx + (x^2 + y^2)dy]$ where c is the square	7	L2	CO2		
		formed by the lines $y = \pm 1$ and $x = \pm 1$.					
	b.	Apply stokes theorem to evaluate $\int_{c} (ydx + zdy + xdz)$ where c is the curve of intersection $x^2 + y^2 + z^2 = a^2$ and $x + z = a$.	7	L3	CO2		
	c.	Write a modern mathematical tool program to find the gradient of $\phi = x^2y + 2xz - 4$.	6	L3	CO5		
-		Module – 3	7	1.2	CO2		
5	a.	Form the partial differential equation by eliminating the arbitrary constant from the relation. $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.	7	L2	CO3		
	b.	Solve the equation $\frac{\partial^2 z}{\partial u^2} = x + y$ given that $z = y^2$ when $x = 0$ and $\frac{\partial z}{\partial x} = 0$ when $x = 2$.	7	L3	CO3		
	c.	Solve $y^2p - xyq = x(z - 2y)$.	6	L3	CO3		
_		OR	7	1.2	CO2		
6	a.	Form the partial differential equation by eliminating arbitrary function from the equation $z = y^2 + 2f\left(\frac{1}{x} + \log y\right)$.	7	L2	CO3		
	b.	Solve $\frac{\partial^2 z}{\partial x^2} - 2\frac{\partial z}{\partial x} + 2z = 0$ subject to $z = e^y$ and $\frac{\partial z}{\partial x} = 0$ when $x = 0$.	7	L3	CO3		
	c.	With usual notation derive a one-dimensional heat equation.	6	L2	CO3		
		Module – 4					
7	a.	Using the Regula – Falsi method find the fifth root of 10 assuming that the root lies between 1 and 2. Carry out three approximations.	7	L3	CO4		
	b.	Given that: $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	L3	CO4		
		Find the value of y at $x = 0.1$, by using appropriate formula.					
	c.	Evaluate $\int_{0}^{\frac{\pi}{2}} \sqrt{\cos \theta} d\theta$ by Simpson's $\frac{1}{3}^{rd}$ rule taking 7 ordinates.	6	L3	CO4		
		2 of 3					

			BN	/IAT	C201
		OR			
8	a.	Use Newton – Raphson method to find the approximate root of the equation $e^x - 3x = 0$ that lies between 0 and 1. Perform and approximate.	7	L3	CO4
	b.	Using Lagranges interpolation formula find f(18) for the data :	7	L3	CO4
	c.	Evaluate $\int_{0}^{1} \frac{1}{1+x^{2}} dx$ by using Simpson's $\frac{3}{8}$ rule taking four equal strips.	6	L3	CO4
		Module – 5			14
9	a.	Use Taylor's series method solve the initial value problem $\frac{dy}{dx} = xy - 1$, $y(1) = 2$ at the point $x = 1.02$, consider three non-zero terms.	7	L3	CO4
	b.	Using fourth order Runge-Kutta method find y at $x = 0.1$, given that $\frac{dy}{dx} = x(1+xy), y(0) = 1.$	7	L3	CO4
	c.	Solve the differential equation $\frac{dy}{dx} = -xy^2$ under the initial condition $y(0) = 2$, by using modified Euler's method at $x = 0.1$. Take step size $h = 0.1$. Perform three modification.	6	L3	CO4
		OR			•
10	a.	Employ Taylor's series method to find y at $x = 0.1$ given that $\frac{dy}{dx} - 2y = 3e^x$, $y(0) = 0$, consider three non-zero terms.	7	L3	CO4
	b.	Applying Milne's predictor – corrector method compute y at x = 0.8, for the data y(0) = 2, y(0.2) = 1.9231, y =(0.4) = 1.7241 and y(0.6) = 1.4706 to the equation $\frac{dy}{dx} = -xy^2$.	7	L3	CO4
	c.	Write a modern mathematical tool program to solve $\frac{dy}{dx} = 2x + y$, $y(1) = z$ by $R - K 4^{th}$ order method.	6	L3	CO4