CBCS SCHEME

|--|

BMATS201

Second Semester B.E./B.Tech. Degree Examination, June/July 2025 Mathematics – II for CSE Stream

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. VTU Formula Hand Book is permitted.

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Evaluate	07	L3	CO1
		$\int_{-1}^{1} \int_{0}^{z} \int_{x-z}^{x+z} (x+y+z) dy dx dz$			
	b.	Evaluate	07	L3	CO1
		$\int_{0}^{\infty} \int_{x}^{\infty} \frac{e^{-y}}{y} dy dx$ by changing the order of integration.			
	c.	Show that	06	L2	CO1
		$\beta(m,n) = \frac{\Gamma(m).\Gamma(n)}{\Gamma(m+n)}$		8	
		OR			
Q.2	a.	Evaluate	07	L3	CO1
		$\int_{0}^{1} \int_{0}^{\sqrt{1-y^2}} (x^2 + y^2) dy dx$ by changing to polar coordinates.			
	b.	Using double integration find the area of a plate in the form of a quadrant	07	L3	CO1
		of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$			
	c.	Using mathematical tools, write the code to find the volume of the tetrahedron bounded by the planes $x = 0$, $y = 0$, $z = 0$ and $6x + 3y + 2z = 6$.	06	L3	CO5
		Module – 2			
Q.3	a.	Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at the point $(2, -1, 2)$.	07	L2	CO2
	b.	Evaluate $\overrightarrow{\text{div }F}$ and $\overrightarrow{\text{curl }F}$ at the point $(1, 2, 3)$,	07	L3	CO2
		given $\vec{F} = \text{grad}(x^3y + y^3z + z^3x - x^2y^2z^2)$			
	c.	Express the vector $\vec{F} = 2x \hat{i} - 3y^2 \hat{j} + zx \hat{k}$ in cylindrical form.	06	L3	CO2
		OR			
Q.4	a.	Find the directional derivative of $\phi(x, y, z) = x^2yz + yxz^2$ at $(1, -2, 1)$	07	L2	CO2
		in the direction of the vector $2\hat{i} - \hat{j} - 2\hat{k}$.			
	b.	Show that the vector	07	L3	CO2
		$\vec{F} = \frac{x \hat{i} + y \hat{j}}{x^2 + y^2}$ is both solenoidal and irrotational.			
	c.	Using mathematical tool, write the code to find the gradient of $xy^3 + yz^3$.	06	L3	CO5

			EBIV	I A I	S201
		Module - 3			
Q.5	a.	Show that the set $W = \{(x, y, z) / x + y + 2z = 0\}$ of the vector space $V_3(R)$ is a subspace of $V_3(R)$.	07	L2	CO3
	b.	Find the basis and dimension of the subspace spanned by the vectors $\{(1, -1, 0), (0, 3, 1), (1, 2, 1), (2, 4, 2)\}$ in \mathbb{R}^3 .	07	L3	CO3
	c.	Find the matrix of the linear transformation $T: V_2(R) \to V_3(R)$ such that $T(-1, 1) = (-1, 0, 2)$ and $T(2, 1) = (1, 2, 1)$.	06	L2	CO3
		OR			
Q.6	a.	Determine whether the following set of vectors in 2×2 matrix space is linearly independent or linearly dependent: $S = \{v_1, v_2, v_3, \} \text{ where } v_1 = \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}, v_2 = \begin{bmatrix} 3 & 0 \\ 2 & 1 \end{bmatrix} \text{ and } v_3 = \begin{bmatrix} 1 & 0 \\ 2 & 0 \end{bmatrix}$	07	1.2	CO3
	b.	Prove that $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x, y, z) = (x + y, y + 2z)$ is a linear transformation.	07	1.2	CO3
	c.	Verify the Rank – nullity theorem for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^2$ defined by $T(x, y, z) = (y - x, y - z)$.	06	L2	CO3
	,	Module – 4			
Q.7	a.	Find a real root of the equation $x \log_{10} x = 1.2$ by regula falsi method corrected to 4 decimal places between (2.5, 3). Carry out 4 iterations.	07	L2	CO4
	b.	From the following table of half yearly premium for policies maturing at different ages, estimate the premium for the policies maturing at the age of 46. Age: 45 50 55 60 65 Premium (in Rs.) 114.84 96.16 83.32 74.48 68.48	07	L3	CO4
	c.	Use Trapezoidal rule to estimate the integration $\int_{0}^{1} \frac{1}{1+x^{2}} dx$ by taking 10 equal intervals.	06	page 3	CO4
		OR			1
Q.8	a.	Find by Newton's Raphson method, the root of the equation $\cos x = x e^x$ near to 0.5, corrected to 4 decimal places.	07	L2	CO4
	b.	Using Newton's divided difference interpolation, find the interpolating polynomial of the given data:	07	L3	CO4
	c.	Evaluate using Simpson's $(1/3)^{rd}$ rule, $\int_{4}^{5.2} \log x dx \text{by dividing the range } (4, 5.2) \text{ into seven ordinates.}$	06	L3	CO4

BMATS201

		Module – 5			
Q.9	a.	Solve $y' = 3x + y^2$; $y(0) = 1$ using Taylor's series method at $x = 0.1$ and $x = 0.2$.	07	L3	CO4
	b.	Given $\frac{dy}{dx} = \frac{y-x}{y+x}$ with $y = 1$ when $x = 0$. Find an approximate y at $x = 0.1$ using Euler's modified method. (Use modified formula twice).	07	L3	CO4
	c.	From the data given below find y at x = 1.4 using Milne's method. Given $\frac{dy}{dx} = x^2 + \frac{y}{2}$. $x: 1 1.1 1.2 1.3$ $y: 2 2.2156 2.4549 2.7514$	06	L3	CO4
		OR			l
Q.10	a.	Using Runge – Kutta method of order 4, find y at $x = 0.2$, given $\frac{dy}{dx} = \frac{x^2 + y^2}{10}$; $y(0) = 1$ taking $h = 0.1$.	07	L3	CO4
	b.	Using modified Euler's method solve $y' = 3x + \frac{y}{2}$ with $y(0) = 1$ taking $h = 0.2$ at $x = 0.2$. (Use modified Euler's formula twice).	07	L3	CO4
	c.	Using mathematical tools, write the code to solve $\frac{dy}{dx} = x^2y - 1$; $y(0) = 1$ by Taylor's series method at $x = 0.1$ (0.1) 0.3	06	L3	CO5

* * * * *