USN 1 ATY 2 2 E C 1 1 9

BEC401

Fourth Semester B.E/B.Tech. Degree Examination, June/July 2025 Electromagnetics Theory

Time: 3 hrs.

Max. Marks:100

Note: 1. Auswer any FIVE full questions, choosing ONE full question from each module.
2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	С
1	a.	Derive an expression for electric field intensity due to infinite the charge.	8 ,	L2	CO1
	b.	Define Coulomb's law in the vector from and explain.	5 -	L1	CO
	c.	Transform the vector field $W = 10\overline{a}_x - 8\overline{a}_y + 6\overline{a}_z$ to cylindrical co-ordinate system at point P(10, -8, 6).	7	L3	CO
		OR			
2	a.	Define position vector and distance vector with an illustration in Cartesian system.	5	L1	CO
	b.	A change of 1µc is at A(2, 0, 0), what charge must be placed at print	7	L3	CO
		B(-2, 0, 0), which will make 'y' component of total force per unit charge is zero at point $C(1, 2, 2)$. Assume that the media is free space.	-		5
	c.	Electric charge lies in the plane at $z = -2m$ in the form of a square sheet described by $-2 \le x \le +2m$ and $-2 \le y \le +2m$ with charge density P_s of $2(x^2 + y^2 + 4)^{3/2}\eta$ c/m ² . Determine electric field intensity \overline{E} at the origin.	8	L3	CO
		Module – 2		L	L
3	a.	If $\overline{E} = -8xy\overline{a}_x - 4x^2\overline{a}_y + \overline{a}_zV/m$, the charge of 6C is to be moved from	9	L3	CO
		B(1, 8, 5) to A(2, 18, 6). Find the work done. Selected path is $y = 3x^2 + z$ and $Z = x + 4$.			
	b.	State and prove Gauss law.	5	L2	CO
	c.	Derive the expression for current continuity equation.	6	L2	CO
		OR		T	
4	a.	Obtain E and D for infinite sheet of charge using Gauss law.	8	L2	CO
	b.	Let $\overline{D} = 5r^2 \overline{a}_r$ m C/m ² for $r < 0.08m$ and $\overline{D} = 0.1/r^2 \overline{a}_r$ m C/m ² for $r > 0.1m$, find: i) Volume charge density for $r = 0.06m$, ii) Volume charge density for	6	L3	CO
		r = 0.1m. Assume that D is in spherical system.			
	c.	The current density vector is given by $\overline{J} = \frac{2}{r} \cos \theta \overline{a}_r + 20e^{-2r} \sin \theta . \overline{a}_\theta$, find:	6	L3	CO
		i) J at $(r = 3m, \theta = 0^0, \phi = \pi)$			
		ii) Total current passing through the sphere with $r = 3m$, $0 \le \theta \le 20^{\circ}$ and			
		$0 \le \phi \le 2\pi$ in a_r direction.			
_		Module – 3	0	. 1.2	CO
5	a.	Find E at P(3, 1, 2) for the field of two co-axial conducting cylinders with $v = 50V$ at $r = 2m$ and $v = 20V$ at $r = 3$ m using Laplace's equation.	9	L3	CO
	b.	Calculate the value of \overline{J} if $\overline{H} = \frac{1}{\sin} \overline{a}_{\theta}$ at P(2, 30°, 20°).	5	L3	CO
	c.	Deduced Poisson's and Laplace's equation using Gauss law in point form. Write Laplacian operation on 'V' for different co-ordinate system.	6	L2	CO
		1 of 2			

				BE	C401
		OR	40	Y 0	000
6	a.	Derive the expression for magnetic field H due to infinite long straight line using Biot – Savart law.	10	L2	CO3
	b.	A Co-axial cable with radius of inner conductor 'a', inner radius of outer conductor 'b' and its outer radius 'c'. The outer conductor carries current + I	10	L3	CO3
		and inner conductor carries current – I. Determine and sketch variation of \overline{H} against 'r' for: i) $r < a$ ii) $a < r < b$ iii) $b < r < c$ and iv) $r > c$.			
		Module – 4			
7	a.	In a certain region, the magnetic flux density in a magnetic material with	8	L3	CO ₄
		$X_m = 6$ is given as $\overline{B} = 0.005y^2\overline{a}_xT$ at $y = 0.4m$, find \overline{J} , \overline{J}_b and \overline{J}_T .			
	b.	Derive Lorentz force equation and explain.	5	L2	CO4
	c.	Derive an equation for the force between the two differential current elements.	7	L2	CO ₄
		OR			
8	a.	A square loop of wire in $z = 0$ plane carrying 2mA in the field of an infinite filament on the y-axis as shown in the Fig.Q8(a). Find the total force on the loop. Free Space	7	L3	CO4
		(3,0,0) $(3,0,0)$ $2mA$ X $Loop$ $Fig.Q8(a)$			
	b.	Obtain the Tangential component of \overline{B} and \overline{H} is the boundary of two medium having the permeability of μ_1 and μ_2 .	8	L2	CO
	c.	Compare electric and magnetic circuits.	5 -	L2	CO
		Module – 5			
9	a.	Explain inconsistency of current continuity equation in detail.	7	L2	CO
	b.	Derive general wave equation of \overline{E} and \overline{H} for the media with parameters μ , \in and σ .	8	L2	CO
	c.	A circular loop conductor lies in $z = 0$ plane and has a radius of 0.1 m and resistance of 5Ω . Given $\overline{B} = 0.2 \sin 10^3 t$ Tesla, determine the current in the loop.	5	L3	СО
10	T	OR	0	12	CO
	a.	Derive Maxwell's equations in integral and point form for static electric and magnetic fields using Faraday's law, Ampere's circuital law and Coulomb's law.	8	L2	CO
	b.	A 9375MHz uniform plane wave is propagating in polystyrene. If the amplitude of electric field intensity is 20 V/m and the material is assumed to be lossless, find Attenuation Constant (α), phase constant (β), Wavelength (λ), Velocity of propagation (ν), intrinsic impedance (η), propagation constant (γ)	6	L3	СО
		and amplitude of the magnetic field. For polystyrene $\mu_r = 1$ and $\epsilon_r = 2.56$.			