USN						BME302
CDI						

Third Semester B.E./B.Tech. Degree Examination, June/July 2025

Manufacturing Process

Time: 8 hrs.

Max. Marks: 100

Note: 1, Answer any FIVE full questions, choosing ONE full question from each module.
2.M: Marks , L: Bloom's level , C: Course outcomes.

11/2	How				
	and the same	Module – 1	M	L	C
Q.1	a.	What is Pattern? Explain the following patterns used in sand casting.	10	L2	CO1
		i) Split pattern			
		ii) Match plate pattern			
		iii) Sweep pattern			
	b.	Sketch and Explain Jolt type moulding machine.	10	L2	CO1
		OR			
Q.2	a.	Illustrate the different steps involved in shell moulding process.	10	L2	CO1
	b.	Explain how to determine the amount of clay present in the foundry sand.	10	L2	CO1
		Module – 2			
Q.3	a.	Explain with neat sketch the construction and working of direct arc electric	10	L2	CO ₂
		furnace.			
	b.	With a neat sketch, explain resistance furnace.	10	L2	CO ₂
		OR			
Q.4	a.	What is die casting? With a neat sketch explain hot chamber die casting	10	L2	CO ₂
		process.			
	b.	With a neat sketch explain semi-centrifugal casting process.	10	L2	CO2
		Module – 3			
Q.5	a.	Distinguish between hot working and cold working process.	10	L4	CO3
	b.	Derive an expression for wire drawing load by slab analysis.	10	L3	CO ₁
		OR			
Q.6	a.	Explain bending operations with suitable sketches.	10	L2	CO3
	b.	With neat sketches, explain combination die and progressive die.	10	L2	CO3
	•	Module – 4			
Q.7	a.	With a neat sketch, Explain Gas Tungsten Arc Welding (GTAW) Process.	10	L2	CO ₄
	b.	Distinguish between GAS Metal Arc Welding (GMAW) and Gas Tungsten	10	L1	CO ₄
		Arc Welding (GTAW).			
		OR			
Q.8	a.	Explain submerged Arc Welding (SAW) process with a neat sketch.	10	L2	CO ₄
	b.	Analyze the types of flames that can be obtained during oxy-acetalene	1.0	L2	CO ₄
		welding process.			
		Module – 5			
Q.9	a.	Explain the following weld defects with neat sketches.	10	L2	COS
		i) Inclusion			
		ii) Over penetration			
		iii) Porosity			
		iv) Undercut			
		v) Spatter			
	b.	Write a note on Heat Affected Zone (HAZ) in welding with neat sketch.	10	L1	COS
		OR			
Q.10	a.	Define soldering. Explain soldering iron process with a neat sketch.	10	L2	COS
	b.	With a neat sketch. Explain friction stir welding process.	10	L2	CO1

* * * * *