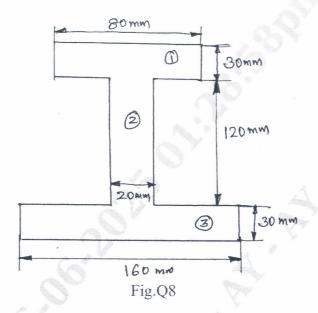
BME301

Third Semester B.E./B.Tech. Degree Examination, June/July 2025 Mechanics of Materials


Time: 3 hrs. Max. Marks: 100 Max. Marks: 100 Max. More A. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	С
Q.1	a.	Define the following with necessary equations: (i) Stress (ii) Strain (iii) Young's modulus (iv) Poisson's ratio	04	L1	CO1
	b.	Explain with a neat sketch the stress-strain diagram for mild steel.	06	L2	CO1
	c.	Determine the overall change in length of the bar shown in the Fig.Q1(c) with following data: $E = 100000 \text{ N/mm}^2$. 20mm dia 14 mm dia 10mm dia 34 km 16 km T 100 mm Fig.Q1(c)	10	L3	CO1
		OR			
Q.2	a.	Derive the relationship among Young's modulus, Bulk modulus and Poisson's ratio.	08	L2	CO1
	b.	An aluminium bar of 50 mm diameter is stressed in a testing machine, at certain instant the applied force is 100 KN while measured elongation of rod is 0.219 mm in a 300 mm gauge length and decrease in diameter is 0.01215 mm. Calculate elastic constants of the material. Module – 2	12	L3	CO1
0.2	T -		0.4	T 1	COA
Q.3	a.	Define Principal planes and principal stresses.	04	L1	CO ₂
	b.	A point in a strained material, the stresses on two planes at right angles to each other are 80 N/mm ² (tensile) and 40 N/mm ² (tensile) each of the above stresses is accompanied by a shear stress of 60 N/mm ² as shown in Fig.Q3(b). Determine normal stress, shear stress and resultant stress on an oblique plane inclined at angle of 45° to the axis of minor tensile stress. Also find the major principal stress minor principal stress and their location, maximum shear stress and its location. Sketch the major and	16	L3	CO2
		minor principal stress and also maximum shear stress planes with respect to x-axis. 40 N mm ² 60 N mm ² 45 80 N mm ² 40 N mm ²			
		X-axis. 40 N/mm ² 60 N/mm ² 80 N/mm ² 60 N/mm ²			
		X-axis. 40 N/mm ² 60 N/mm ² 45 60 N/mm ² 45 40 N/mm ² 40 N/mm ²			

				BM	E301
		OR			
Q.4	a.	What are the differences between thin and thick cylinder.	04	L1	CO2
	b.	Derive an equation for longitudinal stress for thin cylinder.	06	L2	CO2
	c.	Find the thickness of metal necessary for a cylindrical shell of internal diameter 160 mm to withstand an internal fluid pressure of 8 N/mm ² . The maximum allowance or permissible or hoop stress in the section is not to exceed 35 N/mm ² .	10	L3	CO2
		Module – 3			
Q.5	a.	Define a beam. What are the different types of beams?	06	L1	CO3
	b.	Draw the shear force and bending moment diagrams for the beam shown in Fig.Q5(b). Also find the point of contraflexture. 3kh 4m 2m Fig.Q5(b)	14	L3	CO3
		OR		1	
Q.6	a.	Define the following: (i) Sagging bending moment (ii) Hogging bending moment (iii) Point of contraflexture	06	L1	CO3
	b.	Draw the bending moment and shear force diagram for the beam shown in Fig.Q6(b). Brown C D D D Fig.Q6(b) Fig.Q6(b) Madulo 4	14	L3	CO3
0.5		Module – 4	. 10	Т.	004
Q.7	a.	Derive the bending equation in the form of $\frac{M}{I} = \frac{\sigma}{Y} = \frac{E}{R}$	10	L2	CO4
	b.	A simply supported beam of span 5 m has a cross section of 150 mm × 250 mm if the permissible stress is 10 N/mm ² , find (i) Max intensity of uniformly distributed load it can carry. (ii) Max concentrated load 'P' applied at 2 m from one end it can carry.	10	L3	CO4
		OR			545
Q.8		A cast iron beam of I-section shown in Fig.Q8, is simply supported over a span of 6 m. If the limiting bending stress under tension and compression for the material are 32.5 MPa and 65 MPa respectively. Determine uniformly distributed load inclusive of self weight that the beam can carry.	20	L4	CO4

BME301

		Module – 5			
Q.9	a.	Derive torsion equation in the form of	10	L2	CO5
		$\frac{T}{T} = \frac{\tau}{T} = \frac{G\theta}{T}$			
		$\overline{J} = \overline{R} = \overline{L}$			
	b.	A solid shaft rotating at 1000 rpm transmits 50 KW. Maximum torque is	10	L3	CO5
		20% more than the mean torque. Material of the shaft has the allowable			
		shear stress of 50 MPa and modulus of rigidity 80 GPa. Angle of twist in			
		the shaft should not exceed 1° in one meter length. Determine the diameter			
		of the shaft.			
		OR			
Q.10	a.	Define the following:	08	L1	CO5
		(i) Column (ii) Buckling load (iii) Slenderness ratio			
		(iv) Radius of gyration	-		
	b.	Derive an expression for Euler buckling load when both ends of the column	12	L2	CO5
		are fixed.	=		
		And the second s			

* * * * *