BME613D

Sixth Semester B.E./B.Tech. Degree Examination, June/July 2025 Design for Manufacturing and Assembly

Time: 3 hrs. Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

Q.1 a. b. Q.2 a. b. Q.4 a. b.	What are the guidelines for manufacturability on design? Explain breifly. OR The material of a solid cylindrical tie rod of cross sectional area "A" and length "L" is to be selected for carrying a tensile load 'P' with factor of safety "S". Explain the process of material selection as per the cost per unit property method. With the help of a neat block diagram the effect of material properties on design. Explain briefly. Module – 2 Describe with a neat sketch on drilling entry and run out.		L2 L2 L2 L2 L2 L2	CO1 CO1 CO2 CO2
Q.2 a. b. Q.4 a.	OR The material of a solid cylindrical tie rod of cross sectional area "A" and length "L" is to be selected for carrying a tensile load 'P' with factor of safety "S". Explain the process of material selection as per the cost per unit property method. With the help of a neat block diagram the effect of material properties on design. Explain briefly. Module – 2 Describe with a neat sketch on drilling entry and run out. With a neat sketch, explain cast holes, cored holes and machined holes. OR Explain the following terms: (i) Simplification by amalgamation	10 10 10	L2 L2 L2	CO1
Q.3 a. b. Q.4 a.	The material of a solid cylindrical tie rod of cross sectional area "A" and length "L" is to be selected for carrying a tensile load 'P' with factor of safety "S". Explain the process of material selection as per the cost per unit property method. With the help of a neat block diagram the effect of material properties on design. Explain briefly. Module – 2 Describe with a neat sketch on drilling entry and run out. With a neat sketch, explain cast holes, cored holes and machined holes. OR Explain the following terms: (i) Simplification by amalgamation	10	L2	CO2
Q.3 a. b. Q.4 a.	length "L" is to be selected for carrying a tensile load 'P' with factor of safety "S". Explain the process of material selection as per the cost per unit property method. With the help of a neat block diagram the effect of material properties on design. Explain briefly. Module – 2 Describe with a neat sketch on drilling entry and run out. With a neat sketch, explain cast holes, cored holes and machined holes. OR Explain the following terms: (i) Simplification by amalgamation	10	L2	CO2
Q.3 a. b. Q.4 a.	Module – 2 Describe with a neat sketch on drilling entry and run out. With a neat sketch, explain cast holes, cored holes and machined holes. OR Explain the following terms: (i) Simplification by amalgamation	10	L2	CO2
Q.4 a.	Describe with a neat sketch on drilling entry and run out. With a neat sketch, explain cast holes, cored holes and machined holes. OR Explain the following terms: (i) Simplification by amalgamation	10	L2	CO2
Q.4 a.	Describe with a neat sketch on drilling entry and run out. With a neat sketch, explain cast holes, cored holes and machined holes. OR Explain the following terms: (i) Simplification by amalgamation	10	L2	CO2
Q.4 a.	OR Explain the following terms: (i) Simplification by amalgamation			
	Explain the following terms: (i) Simplification by amalgamation	10	L2	CO2
	(i) Simplification by amalgamation	10	L2	CO2
b.	(iii) Design for accessibility			
	Write a short notes on the following: (i) Design for assembly (ii) Design for clampability (iii) Computer applications for DFMA.	10	L2	CO2
	Module – 3	1		
Q.5 a.	Sketch and explain the selective assembly module -1.	10	L2	CO3
b.	Explain the functional and manufacturing datum by taking a suitable example and give the procedure for changing the datum.	10	L2	CO3
	OR			
Q.6 a.	With a neat sketch, explain the "Projected Tolerance Zone".	10	L2	CO3
b.	Explain virtual size concept and the advantages of true position tolerancing.	10	L2	CO3

			H	BME	613D			
Module – 4								
Q.7	2.	Describe design for assembly fits in the design process.	parad Cas	L2	CO4			
	b.	Discuss briefly different steps involved in development of the systematic DFA methodology.	10	12	CO4			
OR								
Q.8	2.	What are the classification system for material handling. Explain briefly.	10	LI	CO4			
	NO.	Write a short notes on the following terms: (i) General design guidelines for manual assembly (ii) Effect of part symmetry on handling time and effect of weight on handling time.	Patron Carro	1.2	CO4			
Module – 5								
Q.9	a.	Describe the environmental objectives, global issues, regional and local issues with respect to DFE.	7944	L2	C05			
	b.	Explain the following with an examples: (i) Life cycle assessment (ii) Basic DFE methods (iii) Weighted sum assessment method.	10	L1 12	CO5			
OR								
Q.10		Write a short notes on the following:	20	1,2	CO5			
	a.	Design for disassembly						

* * * * *

b. Design for recyclabilityc. Design for remanufactured. Design for energy efficiency

e. Design for regulations and standard