USNOCAL

Seventh Semester B.E./B.Tech. Degree Examination, June/July 2025 Control Engineering

Time: 3 hrs

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- 1 a. Explain open loop and closed loop system with block diagram and examples.
 - b. Explain: (i) Proportional control action.
 - (ii) Differential control action.

(10 Marks)

(10 Marks)

OF

- 2 a. Define control system. Explain basic terminologies involved in developing it. (08 Marks)
 - b. Find the transfer function $\frac{X_2(s)}{F(s)}$ for the given mechanical system. Refer Fig.Q2 (b).

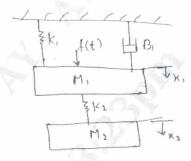


Fig. Q2 (b)

(12 Marks)

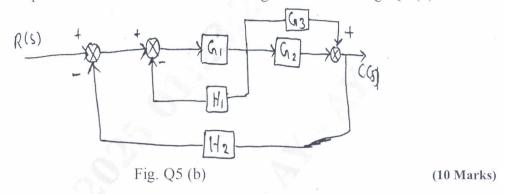
Module-2

- 3 a. List and explain standard Test Inputs used in control system analysis. (10 Marks)
 - b. Explain 1st order system subjected to unit step input.

(10 Marks)

OR

- 4 a. Examine a 2nd order under damped system subjected to unit step input. (10 Marks)
 - b. Identify the following quantities for 2^{nd} order unit feedback system with open loop transfer function $G(s)H(s) = \frac{361}{3}$. Find
 - (i) Damping ratio
 - (ii) Natural frequency
 - (iii) Settling time
 - (iv) Peak time
 - (v) Peak over shoot.


(10 Marks)

Module-3

List and explain rules of block diagram reduction technique.

(10 Marks)

Develop a closed loop transfer function for the block diagram shown in Fig. Q5 (b).

OR

 $\frac{C(s)}{R(s)}$ using Mason's gain formula. a. For the system shown in Fig. Q6 (a). Examine

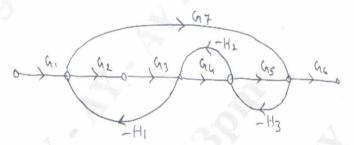


Fig. Q6 (a)

(10 Marks)

 $\frac{C(s)}{s}$ using Mason's gain formula. For the system shown in Fig. Q6 (b), determine

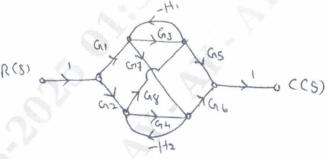
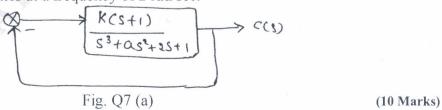



Fig. Q6 (b)

(10 Marks)

Module-4

A system oscillates with a frequency 'w' if it has poles at $s = \pm j\omega$ and no poles in the right half of the s-plane. Determine the values of 'K' and 'a' so that the system shown in Fig. Q7 (a) below, oscillates at a frequency of 2 rad/sec.

b. The open loop T.F of a unit F.B control system is given by, $G(s) = \frac{K}{(s+2)(s+4)(s^2+6s+2s)} \, .$

Determine the range of values of K for system stability. What is the value of K which gives sustained oscillations? What is the oscillation frequency? (10 Marks)

OR

8 Construct a root locus for all values of 'K' ranging from 0 to ∞ for a feedback control system characterized by,

 $G(s)H(s) = \frac{K}{s(s+1)(s+2)(s+3)}.$ (20 Marks)

Module-5

Using Nyquist criterion, examine the stability of a system whose open loop transfer function is, $G(s)H(s) = \frac{K}{(s+1)(s+2)}$. (20 Marks)

OR

Construct a Bode plot for the following transfer function and determine gain margin and phase margin.

 $G(s)H(s) = \frac{50}{s(0.5s+1)(0.05s+1)}.$ (20 Marks)

* * * * *