CBCS SCHEME

TUTE USW

BAE613D

Sixth Semester B.E./B.Tech. Degree Examination, June/July 2025 Vibration And Aeroelasticity

e:3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	C
Q.1	a.	Define vibration? Write some of reasons of vibrations.	05	L1	CO1
	b.	How to reduce the vibration from the systems mention any three of them.	03	L1	CO ₁
	c.	Define the following:	12	L1	CO ₁
		i) Frequency			
		ii) Amplitude			
		iii) Natural Frequency			
		iv) Degree of freedom v) Simple harmonic motion			
		vi) Phase difference			
		OR			
Q.2	a.	Write the various methods of vibration Analysis and derive the equation of	10	L1	CO1
C	1	motion of Energy method.		~~	
	b.	Explain about the types of vibration.	10	L1	CO1
		Module – 2		-	
Q.3	a.	What are the four types of damping used in mechanical system. Explain	10	L2	CO2
		about the viscous damping.			
	b.	A damping force having magnitude $2\cos\left(2\pi t - \frac{\pi}{4}\right)$ N gives 5 COS $2\pi t$ m	10	L3	CO ₂
		4 Tr damping force having magnitude 2005 2nt in	10		
		displacement. Calculate:			
		i) The energy dissipated during first 5 seconds and			
		ii) The energy dissipated during the first $\frac{3}{2}$ seconds			
		4			
		OR			
Q.4	a.	Describe the sources of Excitation of forced vibration?	10	L2	CO1
	b.	Write the types of vibration measuring instrument? Explain about the	10	L2	CO1
		vibrometer.			
0.5		Module - 3 The given figure shows a vibrating system having two degrees of freedom	10	1.2	CO2
Q.5	a.	The given figure shows a vibrating system having two degrees of freedom. Determine the two natural frequencies of vibrations and the ratio of	10	L3	CUZ
		amplitudes of the motion of m_1 and m_2 for the two modes of vibration.			
		amphataes of the motion of m ₁ and m ₂ for the two modes of violations			
		(2			
		3-111			-2
		M, WM M2			
		X1 X2			
		Fig. Q5(a)			
	b.	Derive the mass matrix, damping matrix and stiffness matrix for Forced	10	L3	CO2
		vibration of 2DoF.			
		1 of 3			
		1013			

		BAE613I		
	OR			
Q.6 a	Use Lagrange's equation. Find the equation of motion for a system as shown in fig.Q.6 (a) where $M_1 = 10$ kg, $M_2 = 15$ kg and $K = 320$ N/M	10	L3	CO2
A	$\longrightarrow x_1 k \longrightarrow x_2$		2	
*	Fig.Q. 6 (a)			
b	Two bodies having equal masses as 60 kg each and radius of gyration 0.3m are keyed to bolt ends of a shaft 0.8m long. The shaft is 0.08m is diameter for 0.30m length, 0.10m diameter for 0.20m length and 0.09m diameter for rest of the length. Find the frequency of torsional vibrations. Take $G = 9 \times 10^{11} \text{ N/m}^2$.	10	L3	CO2
0.5	Module – 4	10	T 4	001
Q.7 a	Determine the flexibility influence co-efficient for the system shown in fig. Q.7 (b)	10	L1 L3	CO ₂
	$m_1 = lolg$ $To.05m$ $To.05m$ $To.05m$ $Fig. Q.7 (b)$ OR			
Q.8 a	Using matrix method determine the Natural frequency of the given system.	10	L4	CO2
la	Determine the Natural frequency of the spring mass system as shown in fig. Q.8 (b). Take $M_1 = M_2 = M_3 = M$ and $K_1 = K_2 = K_3 = K$ use Stodola's method.	10	L3	CO2

(*)»

		Module – 5	BA	E61	3D
Q.9	a.	Write the types of Aeroelastic Instabilities and describe about the static Instabilities with their preventions.	10	L2	CO2
	b.	What is wing divergence? Explain the key factors Influencing the divergence.	10	L2	CO2
		OR			
Q.10	a.	Describe the Analysis and testing to ensure that Aircraft remain aeroelastically stable and safe throughout their operational flight Envelope?	12	L2	CO2
	b.	Explain about the flutter and its prevention.	08	L1	CO
		3 of 3			

3 of 3