

21AE72

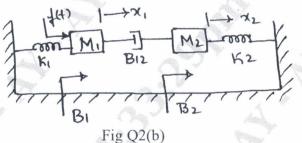
Seventh Semester B.E./B.Tech. Degree Examination, June/July 2025

Control Engineering

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

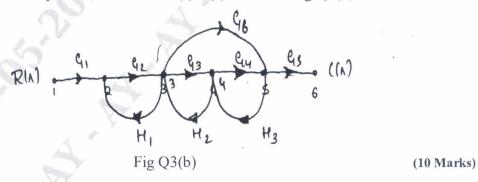

Module-1

- a. Define control system. List out the differences between open loop and closed loop control system with example. (10 Marks)
 - b. Explain the various requirement of ideal control system.

(10 Marks)

OR

- 2 a. Derive the transfer function of an armature controlled DC motor with neat sketch. (10 Marks)
 - b. Determine the transfer function, $\frac{X_1(s)}{F(s)}$ and $\frac{X_2(s)}{F(s)}$ for the system shown in Fig Q2(b).


(10 Marks)

Module-2

a. List out the rules of Block diagram reduction algebra with example.

(10 Marks)

b. Determine the closed loop transfer function C(s)/R(s) shown in Fig Q3(b).

OR

- 4 a. Obtain the response of underdamped second order system for unit step input with nature of graph. (10 Marks)
 - b. Obtain the response of first order system for unit step input.

(10 Marks)

Module-3

Sketch the root locus of the system whose open loop transfer function is, $G(s) = \frac{K}{s(s+2)(s+4)}$ find the value of K so that the damping ratio of the closed loop system is 0.5.

(20 Marks)

OR

Sketch Bode plot for the following transfer function and determine the system gain K for the gain cross over frequency to be 5 rad/sec. $G(s) = \frac{Ks^2}{(1+0.2s)(1+0.02s)}$. (20 Marks)

Module-4

- 7 a. Write a short note on M and N circle with neat sketch. (16 Marks)
 - b. Define the following:i) Gain Margin ii) Phone margin iii) Bandwidth iv) Resonant peak. (04 Marks)

OR

- 8 a. Consider a unity feedback system having an open loop transfer function $G(s) = \frac{K}{s(1+0.2s)(1+0.05s)}$ Sketch the polar plot and determine the value of 'K', so that (i) Gain margin is 18 db (ii) Phase frequency 60°. (16 Marks)
 - b. Derive the expression for bandwidth (W_b) frequency domain specification of second order system. (04 Marks)

Module-5

- 9 a. Explain the following controller with their transfer function
 - i) PI controller
 - ii) PD controller
 - iii) PID controller

(10 Marks)

b. Enumerate series and feedback compensation with block diagram. (10 Marks)

OR

- 10 a. Define the following
 - i) State
 - ii) State variables
 - iii) State vector
 - iv) State space
 - v) State equation (10 Marks)
 - b. Write short note on controllability and observability. (10 Marks)

* * * * *