CBCS SCHEME

BCV304

Third Semester B.E/B.Tech. Degree Examination, June/July 2025
Water Supply and Waste Water Engineering

Time. 3 hrs)

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

- 2. M: Marks, L: Bloom's level, C: Course outcomes.
- 3. Missing data, if any, may be suitably assumed.

./*/		Module – 1	M	L	C
1	a.	What is meant by per capita demand? What are the different types of water	6	L2	CO1
1	a.	demand? Explain any two water demand in detail.	0	L2	COI
	b.	The population data for a certain town is given below. Find out the population	10	L3	CO1
		in the year 2011 and 2021 by incremental increase method.			
		Year 1961 1971 1981 1991 2001			
		Population 75,000 1,10,000 1,50,000 2,00,000 2,42,000			
	C.	Write drinking water standards along with the units for the following	4	L2	CO1
		parameters:			
		i) pH ii) Turbidity iii) Chloride iv) Iron.			
		A COVY			
		OR OR			
2	a.	What is design period? Briefly explain any four factors governing design	6	L2	CO1
		period.			
	b.	In two periods of each of 20 years, a city has grown from 30,000 to 1,70,000	10	L3	CO1
		and then to 3,00,000. Determine:			
		i) The saturation populationii) The equation of the logistic curve			
		ii) The equation of the logistic curveiii) The expected population after next 20 years.			
		in) The expected population after flext 20 years.			
	c.	List the physical and chemical water quality parameters.	4	L1	CO2
		Control of the contro			-
		Module – 2			
3	a.	What is Aeration? List the different types of aerators and explain any one	4.	L1	CO3
		aerator in detail.			
	b.	The maximum daily demand at a water purification plant has been estimated	10	L3	CO3
		as 12 million liters per day. Design the dimensions of a suitable sedimentation			
		tank (fitted with mechanical sludge removal arrangements) for the raw			
		supplies, assuming a detention period of 6 hours and the velocity of flow as 20			
		cm per minute. Assume water depth in the tank as 4 m.			~
	C.	How is coagulation carried out with alum? Explain with the help of chemical	6	L2	CO3
		reaction.			
		1 of 3			

				BC	V304
		OR			
4	a.	With the help of a neat sketch, explain briefly on filter backwashing process of rapid sand filter.	10	L2	CO3
	b.	Design the approximate dimensions of a set of rapid gravity filters for treating water required for a population of 50,000, the rate of supply being 180 liters per day per person. The filters are rated to work 5000 liters per hour per square meter. Assume two units to be designed and maximum demand is 1.8 time the average daily demand. Take length as 1.5 times the breadth.	10	L3	CO3
		Module - 3			
5	a.	List minor methods of disinfection and explain any two methods in detail.	- 6	L1	CO3
	b.	Describe types of sewerage system with their advantages and disadvantages.	6	L2	CO4
	C.	The BOD of a sewage incubated for one day at 30°C has been found to be 110 mg/ ℓ . What will be the 5-day 20°C BOD? Assume $K_1 = 0.1$ at 20°C.	8	L3	CO4
		OR,			
6	a.	With the chemical equations, explain how hardness is reduced from water by lime-soda process.	8	L2	CO3
	b.	The following observations were made on a 3% dilution of wastewater. Dissolved Oxygen (DO) of aerated water used for dilution = 3 mg/k	12	L3	CO4
		Dissolved Oxygen (DO) of diluted sample after 5 days incubation = 0.8 mg/l			
		Dissolved Oxygen (DO) of original sample = 0.6 mg/l			
		Calculate the BOD of 5 days and ultimate BOD of the sample assuming that the deoxygenating coefficient at test temperature is 0.1.			
		Module – 4			
7	a.	Write the flow diagram employed for municipal wastewater treatment plant. Explain each unit with its importance in flow diagram.	8	L2	CO4
	b.	An average operating data for conventional activated sludge treatment plant is	12	L3	CO4
		as follows: i) Wastewater flow = $35,000 \text{ m}^3/\text{d}$ ii) Volume of aeration tank = 10900 m^3 iii) Influent BOD = 250 mg/l		8	
		iv) Effluent BOD = $20 \text{ mg/} \text{\&}$		1	-
		v) Mixed liquor suspended solids (MLSS) = 2500 mg/\(\text{\ll M} \)			
		vi) Effluent suspended solids = 30 mg/\(\)			
		vii) Waste sludge suspended solids = 9700 mg/\(\)			
		viii) Quantity of waste sludge = 220 m ³ /d Based on the information above, determine:			
		i) Aeration period (hours)			
		ii) Food to microorganism ratio (F/m) (kg BOD per day / kg MLSS)iii) Percentage efficiency of BOD removal			
		iv) Sludge age (days). 2 of 3			

	1			BC	V304
		OR			
8	a.	What do you mean by unit operation and unit process in waste water treatment plant? Give examples.	6	L1	CO ₄
	b.	Explain the different types of screens.	6	L2	CO ₄
	c.	With the neat sketch, explain how oil and grease is removed from wastewater.	8	L2	CO ₄
		Module – 5			
9	a.	Determine the size of a high rate trickling filter for the following data: Sewage flow = 5 MLD Recirculation ratio = 1.5	10	L3	CO4
		BOD of raw sewage $= 230 \text{ mg/} \text{\&}$ BOD removal in primary clarifier $= 30\%$ Final effluent BOD desired $= 25 \text{ mg/} \text{\&}$ Depth of the filter $= 1.8 \text{ m}$.			la:
	b.	With the neat sketch, explain the algae bacteria symbiosis in stabilization	6	L2	CO
		pond.	4	L1	CO
	c.	Write a short note on Rotating Biological Contractor (RBC).	4	LI	CO
10		A single stage filter is to treat a flow of 3.79 MLD of raw sewage with BOD	10	L3	СО
	a.	of 240 mg/L. It is to be designed or a loading of 11,086 kg of BOD in raw sewage per hector meter and the recirculation ratio is to be 1. What will be the strength of the effluent, according to the recommendation of the national research council of USA?			
a	b.	Write a neat sketch, explain the constructional details of sludge digestion tank.	6	L2	CO
	c.	Write short notes on sludge drying beds.	4	L1	СО
		****			-
			i,		
		3 of 3			