BCV401

Eourth Semester B.E./B.Tech. Degree Examination, June/July 2025 Analysis of Structures

Time 3 hrs.

MCA Library

MGALOR

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M: Marks, L: Bloom's level, C: Course outcomes.

	Module – 1	M	L	C
Q.1 a	Difference between statically determinate and indeterminate beams with example.	6	L1, L2	CO
b	Define degree of freedom. What is the degree of freedom for a i) Fixed support ii) Hinged support.	4	L1, L2	CO
C	Determine static and kinematic indeterminacy for the following shown in Fig.Q.1(c). (i) (ii) (iv) Fig.Q.1(c)	10	L3	СО

				BC	V401
		OR			
Q.4	a.	Derive an expression for strain energy due to shear force.	6	L3	CO2
	b.	Determine the vertical deflection at point 'C' for the frame shown in Fig.Q.4(b) using Castigliano's theorem. $EI = 16 \times 10^4 \text{ kN-m}^2$.	7	L3	CO2
	c.	Determine slope and deflection at the free end of a cantilever beam as shown in Fig.Q.4(c) EI = 4×10^5 kN-m ² . Use moment area method.	7	L3	CO2
		Fig.Q.4(c)			
		Module – 3		× 0	004
Q.5	a.	Show that the bending moment at any section as a three hinged parabolic arch of span 'l' and rise 'h' carrying udl of w/m over the entire span is zero.	6	L3	CO3
	b.	A three hinged parabolic arch of 20 m span and rise 5 m, carries a UDL of 40 kN/m on the entire span and a point load of 200 kN at 5 m from right end. Determine reaction, also determine BM, normal thrust and radial shear at 5 m from left support.	14	L3	CO3
		OR			
Q.6	a.	A cable of span 20 m and dip 4 m carries a UDL of 20 kN/m over the entire span. Find: i) Maximum tension in the cable ii) Minimum tension in the cable iii) Length of cable.	10	L3	CO3
	b.	A three hinged parabolic arch of span 20 m and rise 4 m carries a UDL of 20 kN/m over the left half of span. Find the maximum BM for the arch and also determine normal thrust and radial shear at a point 5 m from left support.	10	L3	CO3