BCV601

Max. Marks: 100

Sixth Semester B.I

Time: 3 hrsgal

Sixth Semester B.E./B.Tech. Degree Examination, June/July 2025 Design of RCC Structures

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Use of IS456:2000, SP- 16 is permitted

3. M: Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	M	L	С
Q.1	a.	Compare Working Stree method and limit state method of design.	08	L2	CO1
V.1	b.	Explain the stress block parameters with a neat sketch and derive the	12	L2	CO1
	~ .	expression			
		OR			
Q.2	a.	Explain the terms:	06	L2	CO1
		i) under reinforced section			
		ii) balanced section			
		ii) Over reinforced section			
	b.	A simply supported beam has a rectangular section and carries a uniformly distributed load of 20KN/m over a clear span of 5m. The cross	14	L3	CO1
		- section is 300mm x 650mm and is reinforced with 4 numbers of 20mm			
		diameter bar. Assume cover = 25mm and bearing = 300mm. Assuming			
		M20 grade concrete and Fe415 steel, compute short and long term			
		deflection of the beam.			
		Module – 2			
Q.3		Determine the moment of resistance of T section having the following	20	L3	CO2
	-	section properties: Width of flange = 2500mm, Depth of flange = 150mm,			
		Width of rib = 300mm, Effective depth = 800mm, Area of steel = 8 bars			
		of 25 mm diameter. Use M20 concrete and Fe415 HYSD bar.			
		OR			
Q.4		A doubly reinforced concrete beam having a rectangular section 250mm	20	L3	CO2
		width and 540mm overall depth is reinforced with a 2 bars of 12mm			
		diameter in the compression side and 4bars of 20mm diameter in the			
		tension side. The effective cover to bars is 40mm. Using M20 grade			
		concrete and Fe415 HYSD bars, estimate the flexural strength of the			
		section using IS456:2000 code recommendations.			
		Module - 3			
Q.5		Design a rectangular beam of section 230mm x 600mm of effective span	20	L4	CO2
		6m and effect cover for reinforcement = 50mm. Imposed load on the			
		beam is 40KN/m. Use M20 concrete and Fe415 steel.			
0.7		OR	20	T 4	CO2
Q.6		Design a simply supported beam of span 5m carries a characteristic live load of 12 KN/m. Use M20 grade of concrete and Fe 415 steel.	20	L4	CO2
		Module – 4			
0.7	0	Explain one way and two way slab with examples.	04	L2	CO3,
Q.7	a. b.		_	-	CO3,
	D.	thick brick wall. All edges are simply supported (corner of the slab are		14	003,
		held down). Use live load 3KN/m ² , floor finish 1KN/m ² . Use M20 and			
		Fe415. Apply check for deflection with the reinforcement details.			
		1 of 2	1		
		Y			

			BCV601		
	OR				
Q.8	Design a dog legged staircase for an office building in a room measuring 2.8m x 5.8m clear. Vertical distance between the floors is 3.6m. width of flight is 1.25 m. Allow a live load of 3KN/ m², sketch the reinforcement details. Use M20 and Fe415. Assume the stairsare supported on 230mm wall at the end of outer edges of landing slabs.	20	L4	CO3,4	
	Module – 5				
Q.9	Design a square footing for a short axially loaded column of size 300mm x 300mm carrying 600 KN load. Use M20 concrete and Fe415 steel. SBC of soil is 180 KN/ m ² . Sketch the details of reinforcement.	20	L4	CO1	
	OR				
Q.10	Design a isolated footing for a reetangular column of 300mm x 500mm supporting an axial load of 1000 KN factored. Assume SBC of soil as 1KN/m ² . Use M20 and Fe415. Sketch the reinforcement and perform the necessary checks	20	L4	CO3,4	