Please use this identifier to cite or link to this item: http://13.232.72.61:8080/jspui/handle/123456789/2234
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRadhakrishna, Vangipuram-
dc.contributor.authorKumar, P. V.-
dc.contributor.authorAljawarneh, Shadi A.-
dc.contributor.authorJanaki, V.-
dc.date.accessioned2019-05-17T10:20:52Z-
dc.date.available2019-05-17T10:20:52Z-
dc.date.issued2017-05-
dc.identifier.citationRadhakrishna, V., Kumar, P. V., Aljawarneh, S. A., & Janaki, V. (2017, May). Design and analysis of a novel temporal dissimilarity measure using Gaussian membership function. In 2017 international conference on engineering & MIS (ICEMIS) (pp. 1-5). IEEE.en_US
dc.identifier.issno-2575-1328-
dc.identifier.otherDOI: 10.1109/ICEMIS.2017.8273098-
dc.identifier.urihttp://13.232.72.61:8080/jspui/handle/123456789/2234-
dc.description.abstractEarlier research works addressing the problem of mining time profiled temporal association patterns did not address the possibility of using new similarity measures in the context of time stamped temporal databases except some of our previous works. This research throws focus on designing a new similarity measure for mining similarity profiled temporal association patterns. The objective is to design a fuzzy similarity measure which can be used to discover all valid similarity profiled temporal association patterns.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.subjectComputer scienceen_US
dc.subjectTime stampen_US
dc.subjectTemporal databasesen_US
dc.titleDesign and Analysis of a Novel Temporal Dissimilarity Measure Using Gaussian Membership functionen_US
dc.typeArticleen_US
Appears in Collections:Articles

Files in This Item:
File Description SizeFormat 
IEEE Design and Analysis of a Novel Temporal Dissimilarity Measure Using Gaussian.pdf"Pdf"113.3 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.