Please use this identifier to cite or link to this item: http://13.232.72.61:8080/jspui/handle/123456789/541
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGirisha, A.-
dc.contributor.authorMurali, R.-
dc.date.accessioned2018-12-06T12:19:38Z-
dc.date.available2018-12-06T12:19:38Z-
dc.date.issued2013-06-
dc.identifier.citationGirisha, A., & Murali R. (2013). Hamiltonian laceability in cone product graphs. International Journal of Research in Engineering Science & Advanced Technology, 3(2), 95-99.en_US
dc.identifier.issn2319-328X-
dc.identifier.urihttp://13.232.72.61:8080/jspui/handle/123456789/541-
dc.description.abstractA connected graph G is said to be Hamiltoniant- laceable if there exists a Hamiltonian path between every pair of distinct vertices at a distance„t‟ in G and Hamiltonian-t*-laceable if there exist at least one such pair, where t is a positive integer. In this paper we explore Hamiltonian- t*- Laceability properties of the Cone product Cp(n), Ring product R(2n, 2n, 1) and the Cg –product Cg(n, mk) graphs, where m ≥ 2 and n, k are positive integers.en_US
dc.language.isoenen_US
dc.publisherIJREST.en_US
dc.subjectMathematicsen_US
dc.subjectCyclic producten_US
dc.subjectCone producten_US
dc.titleHamiltonian Laceability in Cone Product Graphs.en_US
dc.typeArticleen_US
Appears in Collections:Articles

Files in This Item:
File Description SizeFormat 
Hamiltonian Laceability in Cone Product graphs-2-6.pdf613.41 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.