Please use this identifier to cite or link to this item: http://13.232.72.61:8080/jspui/handle/123456789/542
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGirisha, A.-
dc.contributor.authorMurali, R.-
dc.contributor.authorShanmukha, B.-
dc.date.accessioned2018-12-06T12:19:48Z-
dc.date.available2018-12-06T12:19:48Z-
dc.date.issued2014-05-
dc.identifier.citationGirisha, A., Murali, R., & Shanmukha, B. (2014). Hamiltonian Laceability in Ring Product and Cyclo Product of Graphs. British Journal of Mathematics & Computer Science, 4(13), 1857-1867.en_US
dc.identifier.issn2231-0851-
dc.identifier.urihttps://www.researchgate.net/profile/Dr_Girish3/publication/280095099_Hamiltonian_Laceability_in_Ring_Product_and_Cyclo_Product_of_Graphs/links/55a8bf5c08aea3d0867c606f.pdf-
dc.identifier.urihttp://13.232.72.61:8080/jspui/handle/123456789/542-
dc.description.abstractB. Alspach, C.C. Chen and Kevin Mc Avaney [1] have discussed the Hamiltonian laceability of the Brick product C(2n; m; r) for even cycles. In [2], the authors have shown that the (m; r)- Brick Product C(2n + 1; 1; 2) is Hamiltonian-t-laceable for 1 t diamn. In [3] the authors have defined and discussed Hamiltonian-t-laceability properties of cyclic product C(2n;m) cyclic product of graphs. In this paper we explore Hamiltonian-t -laceability of (W1;n; k) graph and Cyclo Product Cy(n;mk) of graph. Keywords: Brick product, Hamiltonian-t-laceable graph, .en_US
dc.language.isoenen_US
dc.publisherSciencedomainen_US
dc.subjectMathematicsen_US
dc.subjectCyclo producten_US
dc.titleHamiltonian Laceability in Ring Product and Cyclo Product of Graphs.en_US
dc.typeArticleen_US
Appears in Collections:Articles

Files in This Item:
File Description SizeFormat 
Hamiltonian Laceability in Ring Product and Cyclo Product of graphs.pdf1.03 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.