Please use this identifier to cite or link to this item: http://13.232.72.61:8080/jspui/handle/123456789/543
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGirisha, A.-
dc.contributor.authorMurali, R.-
dc.date.accessioned2018-12-06T12:19:59Z-
dc.date.available2018-12-06T12:19:59Z-
dc.date.issued2013-05-
dc.identifier.citationGirisha. A., & Murali, R. (2013). Hamiltonian laceability in some classes of the star graphs. International Journal of Engineering Science and Innovative Technology, 2(3), 68-71.en_US
dc.identifier.issn2319-5967-
dc.identifier.urihttp://13.232.72.61:8080/jspui/handle/123456789/543-
dc.description.abstractThe graph G is Hamiltonian laceable [2] if there exists a Hamiltonian path between every pair of distinct vertices in it at an odd distance. G is Hamiltonian-t-laceable (t*-laceable) if there exists a Hamiltonian path in G between every pair (at least one pair) of vertices u and v in G with the property d(u,v)  t In this paper, we discuss the Hamiltonian laceability properties of the graphGv , where G is the Star graph , ( 3) 1, G  K n  n . We also explore the Hamiltonian Laceability properties of the subdivision graph  Gen_US
dc.language.isoenen_US
dc.publisherIJESITen_US
dc.subjectMathematicsen_US
dc.subjectHamiltonian pathen_US
dc.subjectHamiltonian laceabilityen_US
dc.titleHamiltonian Laceability in Some Classes of the Star Graphs.en_US
dc.typeArticleen_US
Appears in Collections:Articles

Files in This Item:
File Description SizeFormat 
Hamiltonian Laceability in Some Classes of the Star Graphs.pdf443.12 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.